Aristotle first noticed that hot water freezes faster than cold, but chemists have always struggled to explain the paradox. Until now.
Water may be one of the most abundant compounds on Earth, but it is also one of more mysterious. For example, like most liquids it becomes denser as it cools. But unlike them, it reaches a state of maximum density at 4°C and then becomes less dense before it freezes.
In solid form, it is less dense still, which is why standard ice floats on water. That’s one reason why life on Earth has flourished— if ice were denser than water, lakes and oceans would freeze from the bottom up, almost certainly preventing the kind of chemistry that makes life possible.
Then there is the strange
Mpemba effect, named after a Tanzanian student who discovered that a hot ice cream mix freezes faster than a cold mix in cookery classes in the early 1960s. (In fact, the effect has been noted by many scientists throughout history including Aristotle, Francis Bacon and René Descartes.)
The Mpemba effect is the observation that
warm water freezes more quickly than cold water. The effect has been measured on many occasions with many explanations put forward. One idea is that warm containers make better thermal contact with a refrigerator and so conduct heat more efficiently. Hence the faster freezing. Another is that warm water evaporates rapidly and since this is an endothermic process, it cools the water making it freeze more quickly.
None of these explanations are entirely convincing, which is why the true explanation is still up for grabs.
Today Xi Zhang at the Nanyang Technological University in Singapore and a few pals provide one. These guys say that the Mpemba paradox is the result of the unique properties of the different bonds that hold water together.
What’s so odd about the bonds in water? Discover it
HERE.