Monday, August 26, 2013

Recommended by us: "The EMC effect still puzzles after 30 years"

Thirty years ago, high-energy muons at CERN revealed the first hints of an effect that puzzles experimentalists and theorists alike to this day.

Contrary to the stereotype, advances in science are not typically about shouting "Eureka!". Instead, they are about results that make a researcher say, "That’s strange". This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium.
The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubertet al. 1983).

Continue to read on Cern Courier

Post a Comment